
MASSIVE PARALLELISM AT NAS

Horst D. Simon

Computer Sciences Corporation

NAS Applied Research Branch

NASA Ames Research Center

Moffett Field, CA 94035

simon @orville.nas.nasa.gov

Supercomputing USA/Pacific '91

Santa Clara, California

June 19 - 21, 1991

Long Range Goals of the Numerical Aerodynamic Simulation

(NAS) Program at NASA Ames

. Pursue an aggressive program in acquisition and testing of highly
parallel computer systems.

. Explore architecture, algorithm, performance and language issues, es-
pecially for CFD applications.

. Bring the power of highly parallel supercomputers into the main-
stream of scientific computing.

. Achieve one TFLOPS sustained performance on significant aerophysics
applications by the year 2000.

2

NAS PROGRAM GOALS FOR PARALLEL SYSTEMS (1988)

1) Maximum rate that is assumed necessary to reach stated sustained

rate

2) Computing rates and memory capacities are for full-scale systems

Year of Installation 1989 1991 1994 1997

System2 Gen 1 Gen 2 Gen 3 Gen 4

Sustained Computing 1 10 200 2000

Rate (GFLOPS)

Peak1 Computing 10 100 2000 20000

Rate (GFLOPS)

Main memory 0.5 8 200 1000

(Gbytes)

Current NAS Parallel Supercomputer Resources

What have we learned from our experience with these systems?

4

System Number Memory Peak Last
Name FP Proc. (MB) MFLOPS Upgrade

Cray-2 4 2048 2000 1988

Cray Y-MP 8 1024 2666 1989
TMC CM-2 1024 4096 14000 1991
Intel iPSCj860 128 . 1024 7680 1990

Overview of Parallel CFD Research at NASA Ames

3

Project Researchers Y-MP CM-2 iPSC

Multigrid (NAS b'mark) Frederickson, Barszcz x x x

Conj. gradient (NAS b'mark) Schreiber, Simon x x x

3D FFT PDE (NAS b'mark) Bailey, Frederickson x x x

Integer sort (NAS b'mark) Dagum x x x

LU solver (NAS b'mark) Fatoohi, Venkatakrishnan x x x

Scalar penta. (NAS b'mark) Barszcz, Weeratunga x x x

Block tridiag. (NAS b'mark) Barszcz, Weeratunga x x x

INS3D (incom. Nav. Stokes) Fatoohi, Yoon x x x
Isotropic turbulence simul. Wray, Rogallo x x x

PSIM3 (particle method) McDonald x x

PSICM (particle method) Dagum x

F3D (ARC3D multo zones) Barszcz, Chawala, Weeratunga x x

CM3D (ARC3D derivative) Levit, Jesperson x x
ARC2D Weeratunga x
Unstructured Euler solver Hammond, Barth, Venkatakrishnan x x
Unstructured partitioning Simon x
High precision vortex anal. Bailey, Krasny x

The NAS Connection Machine-2

. Hardware has been upgraded with 64-bit floating point processors and
4 GB of main memory.

. Software has been upgraded to support the "slicewise" model.

. Most programmers now use the CM slicewise Fortran compiler, which
is based on Fortran-gO.

Notable application result:

. CM3D, a 3-D fully implicit Navier-Stokes CFD application. Perfor-
mance: up to 275 MFLOPS (16K processors). C. Levit and D. Jes-
person of NASA Ames.

5

Principal Advantages of the CM-2

. A programming language based on Fortran-gO.

. Relatively stable system software.

Principal Disadvantages of the CM-2

. Insufficient bandwidth between processors and local main memory.

. Insufficient bandwidth between nodes.

. Inflexible facility for partitioning nodes between users.

. Numerous bugs in Fortran compiler.

. Inefficient implementation of many Fortran-gO constructs.

. Poorly documented "tricks" are usually necessary to obtain respectable
performance.

6

The NAS Intel iPSCj860

. Based on the Intel i860 RISe floating poiIJ.t processor, which features'
a peak performance of 60 MFLOPS (64-bit).

. 128 nodes with 8 MB main memory per node.

. Fortran and C compilers from the Portland Group can run on Sun or
SGI workstations.

Notable application result:

. An isotropic turbulence simulation code. Performance: up tq 1.6
GFLOPS (32-bit data, Vectoral language with assembly-coded 1-D
FFT). A. Wray and B. Rogallo of NASA Ames.

7

Z
t:a
0-
('D
"'"'t

0
I-t-)

~
"'"'t

0n
('D
Cf.)
Cf.)
0
"'"'t

Cf.)

~

~o
0 0

0

~
0

""""""

0
tV

""""""

0
IJ.,)

Mflops
~

0
""""""

0
UJ

""""""

0
~

~
0

N-

\~\ ! I

~It ~ ~ 1 1

j\..:'.\.\, I i

i \ ~~'.~~:.>\ i i

1 . '8; \ 1 1

; ; \:.~\~ '''''.''.''''''.'''''''''+-..''''''''''''''''''''''''''.'''''1
1 ~\ 1 I
: ~', : \ : I
1 ~ \1 \ ! I
! . ~ It~ 1

! ~.\~~\!
! i" \ " i

i I \'\ i

! ~ ~ " ;
; ; \. ;

! + ~i ~

~
~
0

~
CI:)

...

"""'".
::
n.......
~
Q.."""'".
::

~
n
0
3
3
~
::"""'".
n
~f""'1'o"""'".
0
::

Principal Advantages of the iPSC/860

. Straightforward to obtain "respectable" performance (i.e. > 100 MFLOPS).

. Flexible design for partitioning the system between users.

Principal Disadvantages of the iPSC/860

. Unstable operating system.

. Disappointing single node performance.

. Insufficient bandwidth between processors and local main memory.

. Insufficient bandwidth between nodes.

. Users must manually synchronize operations, decompose arrays and
communicate data.

8

Problems with Conventional Benchmarks for Parallel
Computers

. Rigid tuning requirements.

. Lack of automatic tools for converting "dusty deck" Fortran codes for
parallel computers.

. Inappropriately small problem sizes.

. Inappropriate algorithms and implementation techniques.

9

The NAS Parallel Benchmarks

. Each problem is completely specified in "pencil and paper" fashion in
a technical document.

. Implementations must be based on Fortran-77 or C, but a wide range
of parallel constructs are allowed.

. With a few exceptions, assembly code and assembly language routines
are prohibited for computations.

. Algorithms, implementation techniques and language constructs may
be selected for a particular system.

. A set of single processor Fortran-77 codes is available as a starting
point.

Available by sending e-mail topar-comp@nas.nasa.gov.

10

Brief Description of the N AS Parallel Benchmarks

1. An "embarrassingly parallel" Monte Carlo simulation problem.

2. A simplified multigrid computation..

3. A conjugate gradient eigenvalue computation involving unstructured
matrices.

4. A 3-D partial differential equation solution using FFTs.

5. A large integer sort, used in "particle method" codes.

6. A block lower and upper triangular system solver.

7. A multiple scalar pentadiagonal equation solver.

8. A multiple block tridiagonal equation solver.

The last three are "simulated CFD application" benchmarks.

11

Preliminary Performance Results (MFLOPS)

MFLOPS figures are based on single processor implementations.

* These results are for 64 nodes.

12

Problem Y-MP CM-2 iPSCj860
Benchmark Size 8 32K 128

Embarrssingly Parallel 228 1104 436 362

Conjugate Gradient 2 x 106 154 2 70
3-D FFT PDE 2562 x 128 1459 273 498
LV solver 643 1365 151 *123
Scalar penta. solver 643 1356 39 *146
Block tridiagonal solver 643 1402 119 *200

3-D FFT PDE Benchmark Techniques

For each system, the key to implementing this benchmark was devising
an appropriate technique for 3-D FFTs:

. Cray Y-MP: Declare array with physical dimensions (nl + 1, n2 + 1,
n3 + 1) and then perform vectorized FFTs in each dimension.

. iPSCj860: Perform I-D FFTs along first dimension, transpose second
dimension to first, 1-D FFTs, transpose, I-D FFTs, transpose.

. CM-2: Employ the slicewise library routine FFT3D.

13

3-D FFT PDE Benchmark PerformanceRates

F: All-Fortran code.

L: Uses a library FFT.routine.
B: Busy times
E: Elapsed times

14

No. Time I

System Code Proc. (sec.) MFLOPS Speedup
Y-MP F 1 39.23 192.2 1.00

F 8 5.17 1458.6 7.59
L 1 29.31 257.3 1.00
L 8 6.15 1226.2 4.77

Intel F 128 22.22 339.4
L 128 15.13 498.5

CM-2 LE 16K 110.88 68.0
LB 16K 53.41 141.2 1.00
LE 32K 87.87 85.8
LB 32K 27.63 272.9 1.93

Sustained Performance Per Dollar

Reasons for low sustained-to-peak percentages:

. Immature compilers.

. Insufficient bandwidth between floating point processors and local.
maIn memory.

. Insufficient interprocessor network bandwidth.

15

Peak FFT PDE Ratio Price PDE MFLOPS

System MFLOPS MFLOPS (%) (US $) Per million $

Y-MP /8 2666 1459 54.7 25.0 58

iPSC/860 7680 339 6.7 2.3 147
CM-2 14000 273 2.0 5.0 54

Algorithms: MFLOPS vs. Run Time

NCUBE-2 Performance on a Convection-Diffusion Problem

(Shadid and Tuminaro, Sandia Natl. Lab.)

Conclusions:

. When selecting an algorithm for a parallel computer, fundamental
numerical efficiency is much more important than appropriateness for
a particular architecture.

. Parallel computer systems must be designed to run numerically effi-
cient algorithms at respectable performance rates.

16

Solver Floating Point CPU Time

Algorithm Operations (Sees.) MFLOPS
J acobi 3.82 x 1012 2124 1800
Gauss-Seidel 1.21 x 1012 885 1365
Least Squares 2.59 x 1011 185 1400
Multigrid 2.13 x 10°9 6.7 318

Hardware: SIMD vs. MIMD

. The data parallel model has proven suitable for many NASA applica-
tions. The trivial synchronization of SIMD hardware has an advantage
for these. .

. Possible exceptions: complicated geometries; chimera schemes; do-
main decomposition schemes. MIMD hardware may have an advan-
tage for these.

. MIMD hardware may have a significant advantage in serving multiple
users.

Conclusion: Neither purely SIMD nor purely MIMD hardware systems
are ideal - an amalgam of the two would be best.

17

Language Obstacles Limiting Widespread Usage of Parallel
Computers.

. Time required to port, debug and tune codes.

. Fear that ported codes will run on only one system.

. Need for explicitly p~ogramming data communication.

. Need for explicitly decomposing data arrays.

. Need to master obscure details of the architecture and arbitrary tun-
ing "tricks".

. Difficulties in debugging asynchronous computations.

18

Fortran-90: a Data Parallel Programming Language

. Most data parallel operations can be represented using Fortran-gO
array constructs.

. Array constructs eliminate the need for explicit array decomposition.

. Many important communication operations, including array transpo-
sitions and shift operations, are provided.

. Standardization is needed for data array layout directives, etc.

. For true asynchronous computations, no language paradigm has yet
emerged. Additional research is needed.

19

How Much Parallelism Can We Effectively Use?

. Many 2-D applications exhibit only I-D parallelism.

. Many 3-D applicat,ions exhibit only 2-D parallelism.

. Many 2-D and 3-D applications require as many as 50 data words per
grid element.

.

Conclusion: n words of memory can support at most (n/50)1/2-way or
(n /50)2/3-way parallelism.

Systems which require more than this level will have limited usability.

20

A Call for Higher Standards in Reporting Performance

Many scientific papers and presentations distort performance figures:

. 32-bit results are compared with 64-bit results on other systems.

. MFLOPS figures are based on operation counts of inflated parallel
implementations and inefficient algorithms.

. Codes used for comparative performance on conventional supercom-
puters have not been fully tuned. .

. Inner kernel performance figures are quoted for an entire application.

. Assembly code, etc., is employed but not disclosed.

. Figures obtained on smaller systems are projected linearly to full-sized
systems, without justification.

Reference: "Twelve Ways to Fool the Masses When Giving Performance
Results on Parallel Computers", by DHB.

21

Conclusions

. The CM-2 and iPSC/860 systems, while showing promise, do not yet
deliver sustained performance comparable to full Cray systems.

. Common shortcomings: immature compilers and operating systems;
insufficient main memory bandwidth; insufficient internode bandwidth.

. Parallel computer systems must be designed to run numerically effi-
cient algorithms at respectable performance rates.

. The best parallel hardware design"is an amalgam between SIMD and
MIMD.

. Fortran-gO is good for data parallel computations. No paradigm has
yet emerged for true asynchronous computations.

. There is a limit to the amount of parallelism present in many large
scientific computations.

. The field of parallel computing may lose credibility unless researchers
and vendors are more circumspect in reporting performance.

22

